
Getting Started with Modern Mobile

Development

@despos

Content

● Mobile computing: Web and smartphones

● iPhone: tools, languages, deployment

● Android: tools, languages, deployment

● Windows Phone: tools, languages, deployment

● BlackBerry: tools, languages, deployment

A bit of background …

● First time I heard “mobile is the future” was in 2000…

• …That future didn’t come for about a decade

● After years of .NET consulting/authoring, I’m switching to

all-round mobile: strategy, models, development

● More and more companies in industry (not a specific

sector) see mobile investments critical for their future

• Both B2C and B2B

• Printing, Editorial, Telecom, Banking, Mass retailers, Tourism,

Entertainment, Hotels

Mobile Computing: Web and smartphones

Essence of mobile computing

● Devices, devices, devices

• Cell phones, smartphones, tablets

• Running applications on the go

● (Intricate) Jungle of different:

• Device capabilities

• Operating systems

• Platforms and SDK

• Computers

● Much worse than with desktop browsers

• Heterogeneous audience, higher costs for startup &

maintenance

Mobile computing: Web

● It all started ten years ago …

• From a specific subset of HTML to HTML5

● 2000 WML

● 2002 primitive forms of XHTML

● 2004 XHTML

● Now quickly moving towards HTML5

Mobile Web: challenges

● Ad hoc design of web sites (m-sites)

● Different layout, different content, different idea

• It’s just a new project

● Reusability is a great thing, if applied at the right level

• Don’t succumb to the siren call that m-sites are the standard

ASP.NET sites just with a different CSS/layout

• Architect your site to expose reusable/queryable logic

• Add a mobile service layer that serves right data to presentation

1 of 3

Mobile Web: challenges

● Mobile sites are generally simpler than classic sites

• Logical/functional subset; not a physical subset

● In theory, mobile sites can provide you a huge audience

• Millions of devices can browse the web

• Nearly each device in its own way

• Huge fragmentation (of capabilities)

● Know your users

• Selling ringtones? Your target is the device; maximize audience

• Selling services? Your target is (smart) consumer; focus on apps

2 of 3

Mobile Web: challenges

● Fragmentation is huge

● Don’t trust the device

• Manufacturers want to make each device kind of unique

• For years, they just customized the embedded browser

• Net effect is that too many devices have a different set of

capabilities

● Querying for capabilities

• Test capabilities in JavaScript via DOM and browser OM

• Acceptable results in desktop Web; not in mobile Web because

of the different impact/size of fragmentation

3 of 3

WURFL at a glance

● XML-based repository of device capabilities

• 500+ different capabilities of 7000+ devices

● Open-Source product with very strict (AGPL v3) license

• AGPL = open-source all of the source code on your server

• Commercial license from ScientiaMobile (scientiamobile.com)

● Adopters

• Facebook, Google, AdMob

• Numerous mobile (virtual) network operators

● WURFL in .NET

• Official API from ScientiaMobile (scientiamobile.com/downloads)

• API from 51Degrees (with uncertainties around the licensing

terms for the WURFL repository)

1 of 2

WURFL at a glance

● Users, manufacturers, MNOs/MVNOs, content providers

have different interests

● No easy way to agree on a set of standards

● If-then-else to output different CSS/script/layout doesn’t

work because of the huge number of possible scenarios

• Can’t fork a site per device and not even for classes of devices

• Focus on capabilities and WURFL tells you about capabilities

“known to be associated” with a given UA string

● WURFL is for the content provider

• Let content providers know about real capabilities of the device

2 of 2

Mobile computing: smartphones

● Smartphones run their own OS/platform

• Mobile OS is like a continent

• Differences at various levels

• Continents partition Earth; mobile OSs partition mobile space

● A few platforms you might want to address

• iPhone/iPad

• Android

• BlackBerry

• Windows Phone 7

• Maybe Nokia QT

Mobile Web vs. Native Apps

● Follow-up session («Mobile Dilemma»)

● Decision boils down to your mobile strategy

• Generally preferable to start with a m-site (large audience, lower

development costs)

• Advertise your m-site; redirect automatically to m-site

• Upgrade to m-site subscriptions

• Upgrade to smart-apps. For which platforms?

● Native apps may be cooler, but expensive

● Some middle ground being researched...

iOS

iOS: tools

● You need a Mac; the cheapest Macbook is fine

• Mac is necessary to compile the code as it relies on libraries that
simply don’t exist in Windows

• Technically, can run OSX on a Win box; except that it is illegal

● Join the iOS developer program ($99/year)

• Free registration doesn’t not allow to test on real devices

• In 2010, US declared jailbreaking lawful

● Get and install Xcode from Mac store

● Get and install the iOS SDK

● Get familiar (???) with Objective C

iPhone App Basics

● Starter method (main.m)

● Single window object is created by you in main or

loaded from a XIB file

• XIB files are where the UI behind the iPhone application is

saved/packaged (i.e., form designer files in .NET)

• Single window contains views and/or controls

• One window, possibly multiple views

● Views are rectangular areas on top a window

• Display content (controls, animation, text, drawing)

• Handle events (touch)

• Various specialized views: table, Web, alert, navigation

• View behavior handled by controller classes

#import <UIKit/UIKit.h>
#import "MyWindow.h"

int main(int argc, char **argv)
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 return UIApplicationMain(argc, argv, [MyWindow class], nil);
}

The window class to create.

This is nil if you rely on the main XIB file.

The name of the app-delegate to use.

If nil, then assumes "AppDelegate"

@interface MyWindow : UIApplication {
 UIView *mainView;
 UITextView *textView;
}

#import "MyWindow.h"
@implementation MyWindow

(void) applicationDidFinishLaunching: (id) unused
{
 UIWindow *window;
 struct CGRect rect = [UIHardware fullScreenApplicationContentRect];
 rect.origin.x = rect.origin.y = 0.0f;

 window = [[UIWindow alloc] initWithContentRect: rect];
 mainView = [[UIView alloc] initWithFrame: rect];
 textView = [[UITextView alloc]
 initWithFrame: CGRectMake(0.0f, 0.0f, 320.0f, 480.0f)];
 [textView setEditable:YES];
 [textView setTextSize:14];

 [window makeKey: self];
 [window _setHidden: NO];
 [window setContentView: mainView];
 [mainView addSubview:textView];

 [textView setText:@"Hello World"];
}

Concepts you must get used to ...

● An app-delegate controls the behavior of the application

from start to end

• Receives notifications when the app reaches certain states such

as “finished launching” or “willterminate” or “memory warning”

● A view-controller class governs the behavior of a view

• Handles touch events, initialization

Concepts you must get used to ...

● An outlet is an “object reference” through which the

controller acts with an object (i.e., button) in the view

• Similar to Button1 members in VS, must be created explicitly

• Need outlets to be able to set a label after a button click

● An action is an action to be performed on an object

• First add outlets and actions to XIB

• Next connect them to actual objects so that action “btnClicked” is

associated with an event on Button1 and outlet “Button1” is

associated with a given button…

• Finally, write the code for btnClicked in the view controller class

iOS: MonoTouch

● Use .NET for building iOS applications

• Check out Xamarin.com ($399 license for individuals)

● A Mac computer is still required

• Need: iPhone SDK, Mono, MonoTouch SDK

• Use MonoDevelop to develop code

• Use Interface Builder including Cocoa Touch thus having access

to all the standard iPhone controls

● Limitations on generics and dynamic code (DLR)

● You get a native iPhone application that can be

published as any other iPhone application

● Wrappers for iPhone native API (accelerometer, GPS, ...)

iOS: MonoTouch

● Compile standard .NET 4 code using the MonoTouch

core assemblies

● Reuse is possible via a new compile step for the

MonoTouch profile

• Non UI-code

• Code can potentially be shared between .NET, Android, and

iPhone/iPad

● Currently, C# only

● With some work, it is possible to write iPhone code in

Windows under Visual Studio and use the same project

to compile on Mac

iOS: Deployment

● Applications must be published to the AppStore

• Internal distribution is possible only with an Enterprise developer

account

● Application code must be signed against a distribution

certificate (to identify the publisher) and a distribution

provisioning profile

• For companies, only the Team Agent can get the certificate

• Get the AppStore distribution provisioning profile from the portal

• Compile against that with your distribution certificate and submit

iOS: Testing on devices

● Get a Development Certificate to sign your code

• Create a Certificate Signing Request using the Keychain

Access application on your Mac

• Log on to the portal and upload the CSR

• This needs be done once (per developer)

• Install the certificate in the Mac keychain

● Get a provisioning profile (Pprof) for each device

• Register a device manually through the portal or connect them

to Xcode and let it do what’s required (only a few devices)

• If you do it manually, you need the device UDID

• Can get UDID via Xcode, iTunes, or the device itself (settings)

• UDID != IMEI or serial number

iOS: Getting the Pprof

● Xcode

• Once the certificate is installed, you simply build the app and tell

Xcode you want to test on the attached device

• Xcode gets the Pprof automatically (if the device is registered)

• In alternative, do it manually through the portal and download the

Pprof to the device

● Ad hoc provision profiles

• To test on non-registered devices (up to 100) create an ad-hoc

provision profile manually on the portal

• Indicate UDID and App ID and download the Pprof as a file

• Compile the app against this Pprof and send both profile and

app to the tester

• Tester doesn’t even need to have a Mac and install via iTunes

Over-the-Air Beta Testing

● Upload your IPA file to https://testflightapp.com

● IPA = .app + ad hoc provisioning profile (create in Xcode)

● Get a TestFlightApp account and email testers

● Testers get the IPA from the Web

Android

Android: Tools

● Pay a fee only to publish to the Market (one-time $25)

● Get and install the Java SDK

● Get and install the Android SDK

● Eclipse or IntelliJ Community Edition as the IDE

● Get familiar with Java

Android App Basics

● Starter class

● Create main view

● View based on XML file(s)

● Event handling

● Manual binding of handlers to controls

● Manual definition of control references (outlets)

● Easy match with C#/VB

Android Deployment

● Just compile and distribute the APK executable

● Everything is at your own risk

Phone7

WP7: Tools

● Join the developer program ($99/year)

● Get and install the SDK

● Visual Studio / Blend

● Get familiar with WPF

WP7 App Basics

● Silverlight application

● Special aspects

• Tombstoning

• Launchers/Choosers

• Pivot/Panorama

• Tiles

• Application bar

• Multiple options for storage

WP7 Deployment

● Log on to the portal and submit the app

• The app will go through the certification process and if approved

it is published to the marketplace

● Limit to the number of free apps you can upload

WP7 Testing

● Just install any application you want on unlocked devices

• Max 10 sideloaded applications at a time

● Each developer can unlock up to 3 devices

● Install XAP files via a tool

● No way to install on locked devices

● Private Beta Marketplace to test pre-release apps

● Private,non publicly discoverable marketplace?

WP7 Private Beta Marketplace

● Create a private beta marketplace for your app

• Expires after 90 days

• Non updatable; create a new beta marketplace for new releases

● Adds the tester Live ID to the beta marketplace and

sends an invitation email to the tester

• The invitation email includes a link to the beta XAP

● Up to 100 testers per marketplace

● Testers login to Zune and install the beta application

(only if they are on the approved list)

● Beta software doesn’t go through certification

• Instant uploading of a new fresher XAP

BlackBerry

BB: tools

● Get and install the Java SDK

● Get and install the BlackBerry JDE Component Packs

● Eclipse with the BB plugin

● Get familiar with Java

BB App Basics

● Each UI application is made of a stack of screens

● Topmost screen gets input focus

● Adding a screen displays it; removing a screen displays

the new topmost screen

● Overall similar to Android

● Can even reuse some code that implements logic

public class HelloWorld extends UiApplication
{
 public static void main(String[] args)
 {
 HelloWorld theApp = new HelloWorld();
 theApp.enterEventDispatcher();
 }

 public HelloWorld()
 {
 // Display a new screen
 pushScreen(new HelloWorldScreen());
 }
}

BB Deployment

● Over the Air

• Users go to your web site with the phone and install the

application from it

● Desktop Manager

• Install downloaded apps from PC to a USB-connected device

● Application Web Loader

• Installs the app from a web site to a USB-connected device

● BES administration

• Pushes the application to the devices connected to it

● Virtual Preloads

• Carriers add links to preconfigured apps; users go and install

BB AppWorld

● Register a vendor account for the AppWorld for $0

● Approval process for submitted applications

● Paypal account to get paid

Apps and Stores

September 2011
Approx number of apps per store

Free Paid

http://en.wikipedia.org/wiki/File:Smartphone_share_current.png

App Analytics
Mopapp.com

● Measure of Performance application (mopapp.com)

● Web-based analytics tool integrated with most stores

• App Store, Android Market, AppWorld, WP7 Marketplace

• GetJar, Handango, MobiHand

● Control app sales and downloads

• Get store's daily raw sales data

• Get sales data dressed as snazzy reports and charts

● Currently under free public beta

• Sign-up, start using all features, and pay nothing

• There will always be a free plan …

47

Summary

● Need a strategy far before you need m-sites or iPhone apps.

● So far mobile grew as a forest of individual trees; it’s time to
see it as a uniform forest.

● Architecting Mobile Solutions for the Enterprise, MS
Press, scheduled for Jan 2012

