2009

One Day of Mobile Application
Development

Dino Esposito

Content

e Patterns/Practices of Mobile Development

e Programming for iPhone
* Objective C, MonoTouch, PhoneGap

e Programming for Android
« Java and SDK

e Programming for WP7
 C# and XAML

Patterns of Mobile Development

(Mobile) Design Patterns

e Design patterns are general reusable solutions to
recurring problems in software design
» Description of a solution rather than working code
« Triad: actors, algorithm, data

e Mobile design patterns
« Desirable features to have in a mobile application
 Platform independent (same for iOS, Android, and so forth)

Pattern Memento Mori (or app mortality)
Background

e Garbage collections applies to apps, not (just) objects
« User only allowed to launch an application
« System manages to quit the application

e One foreground application
« System operates on app instances still active in the background

e Role and behavior of background apps may vary a bit

« 10S: Just place calls to some specific API

« Android/BB: Can buy extra processing time via a Ul-less
service. Not recommended for all applications (battery at risk)

- WP7: Tombstoning and background agents

Pattern Memento Mori
Implementation

e Apps notified when no longer interactive
« Given a few seconds of guaranteed lifetime
« May be killed at any time

e Any relevant state at your fingertips
* Present state and date to be likely used in the near future

4)

Applications should consider saving their
state when making it to the background

- J

Pattern Back-and-Save
Background

e Youngsters quick like hell to type on mobile keyboards
... but auto-completion is always welcome
... and software that reads your mind is always welcome

e \What's been just typed is anyway an effort the user
made—don’t throw it away because of Back or Search

e Minimize the typing effort of the user

e Use hints and smart forms of help to minimize errors
« Should | say it? Validate input and don't trust users

Pattern Back-and-Save
Implementation

e Revert the classic pattern of desktop apps
« Always save what's been typed
« Offer a Clear button if that's important for the specific use-case

e Build your infrastructure to intercept when the user is
leaving a screen—save and exit

4)

Save the content of input forms when the
user’s leaving the screen

- J

Pattern Cache-now-for-Later
Background

e Predictive fetch (or sliding download)
« Try to intelligently guess what the user is going to do next
« Try to download in advance data the user may need later
e Later is not necessarily in a few clicks
It can be hours or days until you get another chance to be online

e Example
« Weather information
« Don’t limit to the current day; download the entire week
» Apply "sliding download" policies

Pattern Cache-now-for-Later
Implementation

e Cache whatever can be used later
« Data the user has typed
« Choices made
 State of the application
* Fetch data in advance

e No guarantee of permanent connectivity

4)

Remember data and activity and download
data for later use ASAP & AFAP

- J

Pattern Not-Now-Later
Background

e Data synchronization has always been a critical
iIngredient of mobile applications

e Occasionally connected applications are so common

Pattern Not-Now-Later
Implementation

e Manual coding using Web services
« Take care yourself of deltas

e Sync Framework 4 for Windows
* Now open sourced
« Sync up with on-premise/cloud SQL Server
* Not requiring clients on devices

» Leverages a remote sync service and enables clients speaking
HTTP and OData to use it

 Usable on iIPhone/Android as well

Pattern Guess-Don’t-Ask
Background

e |f there's something you can do to save users a click or
typing, by all means do so

e Minimize interaction
* Typing (use input scopes appropriately, auto-completion)
« Tapping and clicking
» Scrolling
« Thinking (or make user’s choices patently clear)

e Embed data that make the app start quickly
« Define settings but provide reasonable default values for them

Pattern Guess-Don’t-Ask
Implementation

e Remember preferences (cookie-like scenario)

e Example
« Use geolocation to restrict searches
« Arrange and use statistics about use of the app
« Keep track of last action/selection
 Link to contacts (if that’s helpful)

-

Use any resources to make intelligent
guesses and save users interaction

o

Pattern Login-and-Forget
Background

e Classic "Remember Me" scenario of Web applications

e Common pattern for applications that require a login to
some Web service
» Display a login box if credentials are not found on the device

 If credentials are found, use stored credentials to log in
automatically

« Optionally, make your copy of credentials expire periodically (in
addition to expiration policies set on the server)

Pattern Login-and-Forget
Security considerations

e The device can be lost or stolen
« Another guy can pass himself off as you
« Another guy can access the amount of info sitting in the phone
(email, personal data, pics, contacts)
e Strong passwords are hard to type on mobile keyboards
« Switch frequently between input scopes (digits, letters, symbols)
« Subsequently, passwords are simpler than expected

e Credentials stored as clear text are not necessarily
visible to anybody
* Not on WP7; I0S has keychain repository
« On Android, you should consider encryption/cipher

Pattern Login-and-Forget
Security considerations

e Behavior that simplify phishing is common in mobile
» Click, click, and click
 Blind clicking: don’t read URL because of limited screen size
« Harder to spot even patently suspicious URLS

e SSL for outbound communications not an issue on
smartphones, but an issue on low-end devices

e Use platform-specific permissions
* Principle of Least Privilege
« Get just what you need; no more no less

Pattern 3-click Navigation
Background

e Immediacy is key in the mobile space
« Users are not always comfortably sitting when they use the app
« Walking, eating, driving, ...
* Any action should be direct and quick
e Usability and design of the application
« Well-defined use-cases

« Detalled analysis of use-cases
« Ask your kids about it; then make a second pass (as a dev)

Pattern 3-click Navigation
Implementation

e Split each screen in a few sections
e Make each feature ideally 3-clicks away

e Take this pattern as a vector, rather than a strict rule
« But if fail on it, reconsider design and use-cases

e Ensure use-cases and user-stories match

 Likely the user will find required steps «reasonable» and in a
natural sequence

* App and users on the same wavelength

Pattern The-App-Menu

Background

e Sometimes long list of items should be displayed

e Vertical lists of items are simplest approach

« Works most of the time, because scrolling is an easy action on
mobile devices

e Too long lists (100+ items) are boring to scroll
« Create pages and scroll horizontally
* You should stay focused on the OS standards

Pattern The-App-Menu

Implementation

e |Imagine you're creating a restaurant menu
» Create categories
 List options and key information
* Let users drill down

Pattern Babel-Tower

Background

Which language(s) do you support?
« Large audience == Large number of languages
Many facets of localization

» Text, Views, Graphics, Workflows
» Text dwarfs everything else

Native support is good but limited at "software" level
» Bind strings to IDs and have some API to resolve them
« Static approach—requires a new compile step
* Make it more dynamic using some in-device database
* Your API

Main problem remains unresolved
« How to get high-quality localized text?

Pattern Babel-Tower

Localization

e Not a new problem, but revamped by mobile applications
e Best-selling point of mobile apps is comfort for users

e Enabling users to play with the app in their own
language is a double-edged sword
» Great because users like it more
« Bad, if translation is not appropriate

e Nearly all Web sites are limited to just a few languages

e Mobile apps are often offered in 10+ languages
« Translating mobile apps is easier than a full-blown site

Pattern Babel-Tower

Implementation

e Download translated text on the fly

* No need to update the app on the app store if you just add a new
language to the list

* Pick up the language based on the device settings ...
... oryour app will let users choose

e Enable (professional) translators to work on your text

« Without conflict with development team and delays in the project
management

 Ship with the primary language and add new languages at your
earliest convenience

e Keep an eye on tiyla.com

Check connectivity

Never guaranteed—it comes and go quickly
Use system notification services when available
Refresh your Ul promptly

Always detect network availability and always have a
plan B for network operations

IPhone Programming

10S: tools

e You need a Mac; the cheapest Macbook is fine

* Mac is necessary to compile the code as it relies on libraries that
simply don’t exist in Windows

« Technically, can run OSX on a Win box; except that it is illegal ©

e Join the iOS developer program ($99/year)
* Free registration doesn'’t not allow to test on real devices
* In 2010, US declared jailbreaking lawful

e Get and install Xcode from Mac store
e Get and install the 1I0S SDK

e Make a decision about how to tackle iPhone programming ...

IOS: programming options

e Objective C

e Xamarin’s MonoTouch for iOS $399
e Adobe’s PhoneGap

e Appcelerator’s Titanium

o

Adobe’s Creative Suite 5.5 $699
» Packager for iPhone and Android $49/month

IPhone App Basics

e Starter method (main.m)

e Single window object is created by you in main or
loaded from a XIB file

« XIB files are where the Ul behind the iPhone application is
saved/packaged (i.e., form designer files in .NET)

 Single window contains views and/or controls
* One window, possibly multiple views

e Views are rectangular areas on top a window
« Display content (controls, animation, text, drawing)
« Handle events (touch)
 Various specialized views: table, Web, alert, navigation
* View behavior handled by controller classes

#import <UIKit/UIKit.h>
#import "Mywindow.h"

int main(int argc, char *¥*argv)

{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
return UIApplicationMain(argc, argv, [Mywindow class], nil);

}

The window class to create.
This is nil if you rely on the main XIB file.

The name of the app-delegate to use.
If nil, then assumes "AppDelegate"

@interface Mywindow : UIApplication {

UIView *mainview;
UITextView *textview;

#import "Mywindow.h"
@implementation Mywindow

- (void) applicationDidFinishLaunching: (id) unused

{

UIwindow *window;
struct CGRect rect = [UIHardware fullScreenApplicationContentRect];
rect.origin.x = rect.origin.y = 0.0f;

window = [[UIwindow alloc] initwithContentRect: rect];
mainview = [[UIView alloc] initwithFrame: rect];
textview = [[UITextView alloc]

initwithFrame: CGRectMake(0.0f, 0.0f, 320.0f, 480.0f)];
[textView setEditable:YES];
[textView setTextSize:14];

[window makeKey: self];

[window _setHidden: NOJ;

[window setContentView: mainView];
[mainview addSubview:textview];

[textView setText:@"Hello world"];

Concepts you must get used to ...

e An app-delegate controls the behavior of the application
from start to end

* Receives notifications when the app reaches certain states such
as “finished launching” or “willterminate” or “memory warning”

e Aview-controller class governs the behavior of a view
« Handles touch events, initialization

Concepts you may hear about ...
Outlets/Actions in Interface Builder

e Interface Builder is an optional tool that poor souls ©
tend to match to Visual Studio designers

Make use of outlets to hide object references
Make use of actions to add event handlers

e Slightly tedious procedure

Control IDs are numbers

You create wrapper objects (outlets) and then must attach
wrappers to specific controls

IB does that via drag-and-drop (details saved in XIB internals)
Alternative is creating the Ul via code

Concepts you may hear about ...
QOutlets/Actions

e An outlet is an “object reference” through which the
controller acts with an object (i.e., button) in the view
« Similar to Buttonl members in VS, must be created explicitly
* Need outlets to be able to set a label after a button click

e An action is an action to be performed on an object

* First add outlets and actions to XIB

* Next connect them to actual objects so that action “btnClicked” is
associated with an event on Button1 and outlet “Button1” is
associated with a given button...

 Finally, write the code for btnClicked in the view controller class

e |B used for simple apps or simple views of an app
« Can be told to autogenerate object-refs (i.e., .NET control IDs)

Concepts you may hear about ...
Outlets/Actions in code

e Real programmers do everything in code
« Create control instances with explicit coordinates
« Automatic z-order; layers go from background to foreground
« Set properties (not all properties are visible through 1B)
« Set actions

e Everything takes place in loadView (for views)
 In applicationDidFinishLaunching if you have just a window

e Real programmers often create a just-for-fun.xib to
experiment with the graphical layout
« Grab coordinates and copy to source code in loadView

(void) Tloadview

{
// Create a full-screen view and set background
UIView *view = [[UIView alloc]
initwithFrame: [[UIScreen mainScreen] applicationFrame]l];
view.backgroundColor = [UIColor whiteColor];
// Create the button and set title and position
UIButton *button = [UIButton buttonwithType:UIButtonTypeRoundedRect];
button.frame = CGRectMake(100, 170, 100, 30);
[button setTitle:@"Click"
forState:UIControlStateNormal];
// Add a click handler
[button addTarget:self
action:@selector(buttonPressed)
forControlEvents:UIControlEventTouchUpInside];
// Add the button to the view and set the view
[self.view addSubview:button];
self.view = view;
[view release];
}

(void) buttonPressed

{
}

NSLog(@"Button Pressed!");

10S: MonoTouch

e Use .NET for building 10S applications
« Check out Xamarin.com ($399 license for individuals)

e A Mac computer is still required
* Need: iPhone SDK, Mono, MonoTouch SDK
« Use MonoDevelop to develop code

« Use Interface Builder including Cocoa Touch thus having access
to all the standard iPhone controls

e Limitations on generics and dynamic code (DLR)
* NoJITInIOS

e You get a native iPhone application that can be
published as any other iPhone application

e Wrappers for iPhone native API (accelerometer, GPS, ...)

10S: MonoTouch

e Compile standard .NET 4 code using the MonoTouch
core assemblies

e Reuse is possible via a new compile step for the
MonoTouch profile
* Non Ul-code
« Code can potentially be shared between .NET, Android, and
IPhone/iPad

e Currently, C# only

e With some work, it is possible to write iPhone code in
Windows under Visual Studio and use the same project
to compile on Mac

DEMO

e MonoTouch In action

10S: Deployment

e Applications must be published to the AppStore
 Internal distribution is possible only with an Enterprise developer
account
e Application code must be signhed against a distribution
certificate (to identify the publisher) and a distribution
provisioning profile
« For companies, only the Team Agent can get the certificate
» Get the AppStore distribution provisioning profile from the portal
« Compile against that with your distribution certificate and submit

I0S: Testing on devices

e Get a Development Certificate to sign your code

* Create a Certificate Signing Request using the Keychalin
Access application on your Mac

« Log on to the portal and upload the CSR (once per developer)
* Install the certificate in the Mac keychain

e Get a provisioning profile (Pprof)

* Register a device manually through the portal or connect them to
Xcode and let it do what's required (restricted to a few devices)

 If you do it manually, you need the device UDID
« Can get UDID via Xcode, iTunes, or the device itself (settings)
« UDID !'= IMEI or serial number

e A Pprof can point to multiple devices (identified by UDID)

10S: Getting the Pprof

e Xcode

Once the certificate is installed, you simply build the app and tell
Xcode you want to test on the attached device

Xcode gets the Pprof automatically (if the device is registered)

In alternative, do it manually through the portal and download the
Pprof to the device

e Ad hoc provision profiles

To test on non-registered devices (up to 100) create an ad-hoc
provision profile manually on the portal

Indicate UDID and App ID and download the Pprof as a file

Compile the app against this Pprof and send both profile and
app to the tester

Tester doesn’t even need to have a Mac and install via iTunes

Over-the-Air Beta Testing
testflightapp.com

e Developer

Get an account and create a team of testers (need their UDID)
Create IPA against team members UDIDs and upload

Go to site and distribute app

Site makes your app available for download to members

e TJester

Get an account and register device with the site (UDID needed)
Get invited to test an app

Receive via web a version of the app that runs on your device
Outside marketplace

PhoneGap

e Open source solution for building mobile apps using
HTML, JavaScript, CSS
 No ASP.NET, Java, PHP; pure Web client solution
« Create your app using HTML stuff (i.e., In VS)

e Shell of native code that hosts a set of HTML pages
« Uses the WebBrowser control that each platform provides
* Provides a JavaScript API to abstract device-specific functions

e NO way to get automatically a native Ul experience
* Use CSS to mimic a native Ul (e.g., iPhone)
« Use jQueryMobile and touch libraries
« Use script to build ad hoc controls (e.g., Android date-picker)

PhoneGap and JavaScript frameworks

e Device agnostic + open standards

e WebKit

« Layout engine for rendering Web pages
* Engine shared by nearly all mobile browsers (iI0S, Android)
« HTMLS5, local storage, CSS

e |jQuery & jQuery Mobile

« Better JavaScript programming

e XUI, Sencha Touch
« Touch capabilities

PhoneGap

e MIT or BSD New license

« Essentially, do whatever you want but place the "software
provided as is" label in relevant parts of your source

e I0S, Android, BlackBerry (>4.5), webOS, Symbian
« And growing

e PhoneGap Build

e Adobe

PhoneGap

e Native features reached via an internal bridge from
PhoneGap JavaScript framework
* Features depend on platforms/versions

Geolocation

Notification (sound, vibrate, alert)
Storage

Network

Camera

Accelerometer

Contacts

PhoneGap for i10S

Create a new PhoneGap-based application in Xcode
Create a www folder in the Xcode project

Edit the index.html which represents your main screen
Add any Javascript, CSS and image files you need

e Build and run on simulator or device as usual

e PhoneGap apps are okay with Apple
« Each app will be judged on its own merits, PhoneGap aside

DEMO

e PhoneGap in action

Android Programming

Android: Tools

e Pay a fee only to publish to the Market (one-time $25)

e Get and install the Java SDK
e Get and install the Android SDK

e Eclipse or IntelliJ Community Edition as the IDE

e Get familiar with Java

Android App Basics

Starter class

Create main view

View based on XML file(s)
Event handling

Manual binding of handlers to controls
e Manual definition of control references (outlets)

e Easy match with C#/VB

Android Programming
Activities

e Any app is based on one (or more) activity
« Override method onCreate in any activity of yours
« Perform any one-time tasks
« Typically, register event handlers

e OnCreate invoked each time the activity is created
« When the application is starting up
* When the application is re-launched after being paused

e App can be paused
« Save/restore data is up to the application
 Activity may be restarted when rotation changes

Android Programming
Layout and text

e Ul of activities expressed in XML

e Relative positioning preferred
« Absolute positioning deprecated

<?xml version="1.0" encoding="utf-8"7>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android: layout_width="fil1_parent"
android:Tayout_height="fill_parent">
<TextView android:layout_width="fill_parent"
android: Tayout_height="wrap_content
android:gravity="center"
android:padding="7dp"
android:textStyle="bold"
android:textSize="18px"
android:textColor="#3fffff"
android: text="expoware.org/mobile welcomes you!" />
</LinearLayout>

Android Programming
Layout and text

e LinearLayout
« Sequence of panels displayed horiz/vertically

e RelativelLayout
« Elements indicate their preferred position relative to the parent
 Right of, align-to-top, any number of child elements

e Framelayout

* Placeholder for a single (possibly nested) object, used to reserve
space for dynamically generated content

e TableLayout
 Row-based layout

 Indicate rows, Android figures out ideal number of columns
« Can indicate specific column a widget belongs to

Android Programming
Widgets and event handlers

e Widgets defined in XML or added programmatically
e Register listeners programmatically in onCreate

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);
setContentview(R. layout.main);

// Instantiate internal members referring to widgets
buttonl = (Button) findviewById(R.id.buttonl);

// Attach event handlers as required
buttonl.setonClickListener(buttonlClick);

}

private View.OnClickListener buttonlClick = new View.OnClickListener() {
public void onClick(view v) {
UpdateScreen();
}

s

DEMO

e Android in action

Android Programming
Menus

e Define menus as XML resources
* ID, text and icon
« Create submenus by nesting <menu> sub-trees

e Group logically related menu items
« Disable and enable items together
« Use <group> element to group multiple menu items
« Each group is given a unique ID
« No impact on rendered Ul; purely logical
e Menu overrides
« onCreateMenuOptions and onPrepareMenuOptions

 Inflate menu to display
« onOptionsltemSelected

Android Programming
Dialogs

e Auto-disappearing toast messages for quick feedback
e Alert dialog boxes: boring to deal with ...

AlertDialog.Builder builder = new AlertDialog.Builder(MyActivity.this);
builder.setMessage(message)
.setCancelable(false)
.setTitle(title)
.setPositiveButton(yes, new DialogInterface.onClickListener() {
public void onClick(bialogInterface dialog, int id) {
StartNewGame() ;
dialog.dismiss();
}
i3]

.setNegativeButton(no, new DialogInterface.onClickListener() {
pubTlic void onClick(bialogInterface dialog, int id) {
dialog.cancel ();
}

1
AlertDialog alert = builder.create();

alert.show();

Android Programming
Storage: preferences

e Preference framework
« A preference is value+key+description+default value
« Use XML to define groups of preferences
« Types of preferences as Ul tips (checkbox-pref, edittext-pref, list)

e Load preferences into an activity
« Both main activity and additional activity
 Activity displays an ad hoc Ul built around preferences

e Automatic edit and save
e Data saved to a local file—transparent to users/devs

Android Programming
Storage: preferences

e Preference framework

// Trigger a new activity with the preference screen
@override

public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);

Intent intent = new Intent(this, LoginPreferences.class);
startActivity(intent);

}

public class LoginPreferences extends PreferenceActivity
{
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.NameOfThexmlFile);

Android Programming
Storage: preferences

e Direct access to the preference API

// Save preferences (decide about file name and visibility)
SharedPreferences preferences;

preferences = getSharedpPreferences(fileName, MODE_PRIVATE);
Editor preferenceEditor = preferences.edit();
preferenceEditor.putString(key, text);
preferenceeditor.commit();

// Read preferences (use default storage)

SharedPreferences preferences;

preferences = PreferenceManager.getDefaultSharedPreferences(context);
info.Nickname = preferences.getString('"nickname", null);
info.Password = preferences.getString("password"”, null);
info.RememberMe = preferences.getBoolean('"rememberme", true);

DEMO

e Android in action

Android Programming
Storage: files

e Data saved to files is considered private of the app
 Removed when you uninstall/clear the app
« Afile is a file—public, unless you mark it as private
 Files and directories rooted in "/data/data/APP/files"

e Access to external storage (SD) requires permission
« Slightly different API for SD cards
« SD may not be available during debug

e Classic stream-based API

e Learn and apply object serialization

Android Programming
Storage: serialization

public class ObjectFormatter {
public static byte[] Serialize(Object o)

{
ByteArrayOutputStream bos = new ByteArrayOutputStream();
try {
ObjectOutput out = new ObjectOutputStream(bos);
out.writeObject(o);
out.close();
// Get the bytes of the serialized object
byte[] buf = bos.toByteArray();
return buf;
} catch(IOException ioe)
{
return null;
3
}

Android Programming
Storage: deserialization

public class ObjectFormatter {
public static Object Deserialize(byte[] b)
{
try {
ObjectInputStream in = new ObjectInputStream(new
ByteArrayInputStream(b));
Object object = in.readobject();
in.close();
return object;
3
catch(ClassNotFoundException cnfe) {
return null;
3
catch(IOException ioe) {
return null;

}

Android Programming
Storage: picklist

e Alert dialog with a list of items as argument

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("Pick a match");
builder.setItems(matches, new DialogInterface.onClickListener() {
public void onClick(bialogInterface dialog, int index) {
String fileName = matches[index];
MatchStatus status = StoreManager.ReadFromPrivateFile(
getApplicationContext(), file);

// Update the UI of the application to reflect the selected match
SetMatchStatus(status);
Refreshview();

s

AlertDialog alert = builder.create();
alert.show();

DEMO

e Android in action

Android Programming
Networking

e Add permission "android.permission.INTERNET"
e Clean HTTP API

url = "...";
HttpClient client = new DefaultHttpClient();
HttpGet request = new HttpGet(url);
HttpResponse response = client.execute(request);
BufferedrReader rd = new BufferedReader(
new InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = rd.readLine()) != null) {
DoSomethingwithLine(line);
}

HttpPost request = new HttpPost(url);

request.setEntity(new UrlEncodedFormentity(namevaluePairs));
List<NamevaluePair> namevaluePairs = new ArrayList<NamevaluePair>(2);
namevaluePairs.add(new BasicNamevaluePair("id", "12345"));
namevaluePairs.add(new BasicNamevaluePair('"data", "Android 1is cool!"));
HttpResponse response = httpclient.execute(request);

Android Programming
Network availability

e Key aspect of mobile programming

// If no network is available networkInfo will be null,
// otherwise check if we are connected
public boolean isNetworkAvailable()

{

connectivityManager cm;
cm = (ConnectivityManager) getSystemService(CONNECTIVITY_SERVICE);

NetworkInfo networkInfo = cm.getActiveNetworkInfo();

if (networkInfo != null && networkInfo.isConnected())
{

}

return false;

return true;

Android Programming
SMS

e Add permission "android.permission.SEND SMS"

// Send SMS silently

SmsManager sm = SmsManager.getDefault();

String number = "...";

sm.sendTextMessage(number, null, "Your message", null, null);

// Show the screen for sending SMS and let user type.
// No need to get permissions for this

String number = "...";

startActivity(

new Intent(Intent.ACTION_VIEW, Uri.fromParts('"sms", number, null)));

Android Deployment

e Just compile and distribute the APK executable

e Everything is at your own risk
« Behavior over different firmware
 Different hardware/software characteristics
« Conflicts with other applications and crashes
e Android requirements
« Upload signed code (when publish the app)
« Sign against a (self-issued) certificate created with SDK tools
« Re-sign with the same certificate when updating an app
* Not necessary to sign all of your apps with the same key

e My perspective of the Android jungle

Windows Phone 7 Programming

WP7 Programming

Startup

e App.xaml and WMAppManifest.xml

e PhoneApplicationFrame is the top level container
« One for the entire application
» Created automatically when the application is initialized
« Load the page specified in WMAppManifest.xaml

e RootVisual property to set the main application Ul
« Dismisses the splash screen

e PhoneApplicationPage is the base class for pages

WP7 Programming
Layout and XAML

Application bar
StackPanel, Grid, Canvas
Style

Controls and Templates
User Controls

Storyboard

Binding syntax

WP7 Programming

Pivot and panorama

e Pivot applications
« Tab like applications
« Collection of pages loaded individually

e Panorama applications

Single page with multiple panes
Horizontal scrolling

Memory intensive: unique multi-pane page
Never more than 3-4 panes

DEMO

e WP7 In action
* (Snippets of a real-world app)

WP7 Programming

Isolated storage

e Same APl as in .NET

« Stream-based
« Serialization of objects

e |naccessible to other applications
e Need to use a special service to explore storage

e SQL Server CE writing files within iso-storage
« Windows Phone 7.5 (Mango)

e Best approach: Tell-Don’t-Save-Over-and-Over-Again
« Build a framework to save your classes and reuse the code

WP7 Programming

Back and save

e OnBackKeyPress on pages
» Allow to cancel the back navigation
« Can be used to save anyway data

e Back and pivot/panorama
« Move back to the first item instead of exiting the app
« Dismiss dialog boxes (up to you to create a framework)

e Save state during navigation

WP7 Programming

Launchers and choosers

e Launch a system dialog
 WebBrowser, Email, MediaPlayer, PhoneCall, Sms, Search

e Launch a system dialog and get a value
« CameraCapture, EmailAddress, PhoneNumber, Photo

DEMO

e WP7 In action
* (Snippets of a real-world app)

WP7 Programming

Networking

e Async model

e WebClient and HttpWebRequest

e JSON serializer
 DataContractJsonSerializer

Hard termination of an app
Exit via the Back button

e Quit the application and free memory

e Apps get notifications for the event
 Chance to save state to permanent storage
* App decides what’s relevant

e Restore last known state and provide a continuous-feel
experience

Soft termination of an app
User activity causes termination

Incoming calls

Engaged screen

Tap Start button (i.e, launch another app)
Tap Search button

Respond to toast notifications

o
o
o
o
o
e Programmatically invoke launcher/chooser

Tombstoning

e Apps given a 10 sec notice of termination
« Save state to transient memory
« Save state to permanent storage

e Apps are then removed from memory

» System retains app’s transient memory
« Data stored as long as possible

Resuming from tombstoning
Scenarios

e User ends the phone call
e User disengages the screen

e User navigates back to the application using the Back
button
« After checking a toast message
 After making a search

e User completes given chooser task

Resuming from tombstoning
Action

e User reactivates a tombstoned app
* New application instance created
« Transient state (if any still available) passed
« Regqular initialization process bypassed

e No guarantee transient state is still there
* If not, regular initialization takes place

Behavior of tombstoned apps

e No behavior at all; just dead code
« Only MS native apps allowed to be active in the background

e Fake multitasking allows users to switch apps in a few
seconds—not instantly

e Change in WP7 Mango

PhoneApplicationService
Events

e Launching
« Application being launched

e Closing

« Application is exiting
e Deactivating

* Being tombstoned

e Activated
« Made active after being tombstoned

Lifecycle
Standard launch/close cycle

e Launching
« Do not load content from storage or Web

* Do not assume the app is resuming from a previous session
(check StartupMode)

e Closing
« Save persistent state, if any

Lifecycle
Tombstoning cycle

e Deactivated
e Save transient state into the State dictionary
« Consider saving application state to storage
« 10 seconds to complete

e Activated
« Loading any transient state

« Avoid retrieving data from storage
« Critical for load time (consider optimization)

MVVM

e MVVM and Blend
e Just a matter of data-binding?

General practices

Layout

e Based on use-cases, define the main screen for the app
« Use the typical layout of the platform
 Just a few buttons for the main options
* Use menu if common on the platform
« Ensure you can control easily the layout

e Add pages and navigation
« Handle Back button properly
« Use popup dialogs when it's a quick selection

e Add splashscreen and about

Settings

e Abstract your app settings in a class
» Add serialization logic to the class

e Use settings throughout the app
« Bind to localization logic if required

e Add a Settings page
« Save state and settings as often as possible

Design consideration

e Mobile apps are relatively simple
e Not a good reason to release on design constraints

e Maintainability
* Expect frequent updates and extensions to the code

Summary

e Mobile development has a lot of common ground
between platforms

e Each platform does things in a different way—>but nearly
the same things

e |DE is problematic more than languages and SDKs

98

