
The Selfish Object

kevlin@curbralan.com
Kevlin Henney

Software Architect 2007 2

Agenda

• Intent
Present a design style that addresses dependencies 
in a cohesive, open and manageable fashion

• Content
Key concept
Dependencies and pluggability
Control and flow
Partitioning
Summary



Software Architect 2007 3

Key Concept

• Intent
Describe the essence of the selfish object micro-
architectural style

• Content
Selfish objects
Architectural consequences
Common and selfish approaches

Software Architect 2007 4

Selfish Objects

• Instead of focusing on what an object can use 
or even be given, focus on what it wants

In essence, express external dependencies by 
defining specific, narrow, plug-in-style interfaces

• This style is in contrast to common approach of 
abstracting interfaces from implementations

Although better than not abstracting interfaces at 
all, this approach often ends up presenting a broad 
and unfocused façade rather than a narrow and 
specific usage interface



Software Architect 2007 5

Architectural Consequences

• In the large, object self-centredness leads to a 
highly localised, open and testable architecture

Consistent parameterization from above, across 
packages and layers as well as objects, results in a 
more inverted layering, keeping the core domain 
model separated from the plumbing

• Locality and loose coupling are important 
considerations in architecture

Simplifies testability, comprehensibility, 
extensibility, changeability, etc

Software Architect 2007 6

Common and Selfish Approaches

Boundary

Core

Boundary

Core

The common approach to layering can 
result in the core concepts of an 
application depending, ultimately, on 
the I/O (streams, UI, database, etc).

The selfish approach makes the core 
concepts dictate what they need from 
other parts of the system.



Software Architect 2007 7

Dependencies and Pluggability

• Intent
Introduce dependency management techniques that 
promote loose coupling and pluggability

• Content
Dependency management
Singletons and other globals
Parameterize from above
Dependency inversion
Inversion layers

Software Architect 2007 8

Unmanaged Dependencies

• A system's dependency structure can weigh it 
down, and hinder its future prospects, as it...

Becomes harder to understand
Becomes harder to integrate
Becomes harder to extend
Becomes harder to test
Becomes harder to fix
Becomes harder...

• Dependencies (are) matter in architecture



Software Architect 2007 9

Dependency Management

• The dependency horizon should be kept close
A component's total dependency set is formed by 
following the dependencies from the component 
until they either run out or hit the system libraries
This limit or boundary is the dependency horizon

• Interfaces, formal or otherwise, often play a 
key role in loosening a system's coupling

Interfaces may be expressed using a variety of 
mechanisms, depending on the technology

Software Architect 2007 10

Singletons and Other Globals

• Singleton is a common source of dependency-
related problems

It is normally used by coincidence, it introduces a 
centralised point of coupling, it complicates testing, 
and it comes with various lifecycle-related problems

• Consider avoiding modifiable static data —
and consider reducing immutable static data

Includes avoiding the Monostate pattern, which is 
also known as the Borg pattern... which tells you 
everything you need to know



Software Architect 2007 11

Hardwired versus Pluggable

• Pluggability describes a design property that is 
the opposite of hardwired

Hardwiring attempts to nail an assumption in place, 
which is a problem if the assumption represents a 
variable or critical dependency

• Pluggable designs are more testable and 
adaptable than hardwired designs

They also emphasise locality in a design by more 
explicitly dividing concerns between the pluggable 
and the kernel elements of a design

Software Architect 2007 12

Parameterize from Above

• Pass in config parameters rather than having 
them global (e.g. Singleton) or pulled in

Communicate through constructor arguments, 
method arguments or generic parameters, as 
appropriate
Decentralise configuration constants

• Callout interfaces define the configurable 
dependencies of each part

E.g. the Context Object, Plug-In and Strategy design 
patterns or the Mock Object testing pattern



Software Architect 2007 13

Inversion of Dependencies

• Dependency Inversion is a technique for 
rearranging (reversing) dependencies in code

Normally based on introducing an interface of some 
kind that plays the role of a plug-in point
Dependency inversion can be used to break cyclic 
dependencies between packages by containing the 
cycle within a package
Inversion of dependencies often leads to inversion 
of control, i.e. plug-ins lead to callbacks and the 
dependency horizon becomes an event horizon

Software Architect 2007 14

Dependency Inversion in Practice

Dependency Inversion allows a 
design's dependencies to be reversed, 
loosened and manipulated at will.



Software Architect 2007 15

Transitive Dependencies

• Some partitions appear encapsulated, but 
hidden dependencies still create coupling

Traditional layering partitions and groups 
immediate concerns well enough, but it does not 
fully separate them — the transitive dependencies 
can make for a distant dependency horizon

DatabaseCoreUI

Software Architect 2007 16

Inversion Layers

• It is possible to invert dependencies in classic 
layered architectures

An inversion layer introduces a separation between 
concepts and mechanisms
Simplifies testing and parallel development

DatabaseCoreUI

Inversion Layer



Software Architect 2007 17

Control and Flow

• Intent
Focus on control flow model and location of active 
control in a design

• Content
Inversion of control
Dependency injection
Callback mechanisms
Micro-kernel
Interceptor

Software Architect 2007 18

Inversion of Control

• A description of the control flow relationship 
between one component and another

A lower-level component calls out to a higher-level 
component, rather than the higher-level component 
calling the lower-level one
Often a result of dependency inversion

• Inversion of control is based on the Hollywood 
principle: "Don't call us, we'll call you"

Common in framework designs that use a push 
rather than a pull approach to event handling



Software Architect 2007 19

Applications of Inversion of Control

• There are many common patterns where 
inversion of control is applied

Observer is used for event notification from a model 
object to multiple view objects
Enumeration Method is used for iteration
Visitor is used for class hierarchy extension and, 
with Enumeration Method, iterating tree structures

• Inversion of control makes for a more event-
driven programming style

It aligns control flow with event flow

Software Architect 2007 20

Dependency Injection

• Principle of separating configuration from use 
and injecting the configuration dependencies

Used in lightweight component container models
Although it uses inversion of control, Dependency 
Injection it is not a synonym — inversion of control 
is a broader concept, and the key to Dependency 
Injection is the inversion of dependencies
An assembler role is responsible for configuring 
objects, whether through constructor arguments or 
'injecting' methods



Software Architect 2007 21

Callback Mechanisms

• Callback mechanisms depend on the language 
and the desired 

A method selector, such as a delegate or function 
pointer, allows plugging in of a single method
Interfaces — as in the interface construct — supports 
a broader interface in statically typed languages
A dynamically typed protocol may be a more 
normal approach for a language, or it may be 
possible through reflection
Templates and other generic forms are also usable

Software Architect 2007 22

Micro- (and Nano-) Kernels

• A Micro-kernel approach partitions control 
logic, not just concepts

Common logic and concepts are extracted into the 
kernel (or engine) and details are relocated within 
plug-ins
A Nano-kernel is a more minimal and localised 
application of the same idea

• The kernel works in terms of out-bound 
callback interfaces on plug-ins

The domain model itself may well be a plug-in



Software Architect 2007 23

Interception

• How can a design be cleanly extended to 
accommodate extra-functional features?

Modifications of behaviour, such as filtering, or 
addition of features, such as logging

• Favour an Interceptor-based approach rather 
than an adaptation approach

An Interceptor is more configurable and less 
intrusive than many other approaches, such as 
Template Method, that are hardwired

Software Architect 2007 24

Interceptor

• An object, component or framework's basic 
behaviour can be extended

Interception plug-ins are called on certain actions

Kernel
registerPlugIn
operation

Interceptor
beforeOperation
afterOperation

*

Interceptor1 Interceptor2

beforeOperation
afterOperation

beforeOperation
afterOperation

Configurer

Client



Software Architect 2007 25

Partitioning

• Intent
Describe effective practices for broader partitioning 
of a system's classes and components

• Content
Interface separation, role partitioning
Inheritance- versus delegation-based structures
Partitioning by role
Partitioning for stability

Software Architect 2007 26

Interface Separation, Role Partitioning

• One of the most common forms of partitioning 
is separating interface from implementation

"Program to an interface, not an implementation"
• Focus on object roles not object classes

A role defines how an object is to be used, not what 
it is or how it is made
Role-based design tends to give a cleaner separation 
of concerns and more focused interfaces
Class-centric design tends to give coarser-grained, 
implementation-focused classes



Software Architect 2007 27

Inheritance-Based Structure

• Inheritance of implementation can incur 
significant cognitive overhead

In spite of much advice to reduce coupling, cut 
dependencies and use delegation, many current 
guidelines and projects do the opposite
Inheritance with respect to implementation is a 
hardwired approach that accumulates 
dependencies, making it harder to test leaf classes 
and evolve the base of the hierarchy

Software Architect 2007 28

Infrastructure + Services + Domain

Infrastructure
Plumbing and service 
foundations introduced in 
root layer of the hierarchy.

Services
Services adapted and 
extended appropriately for 
use by the domain classes.

Domain
Application domain concepts 
modelled and represented 
with respect to extension of 
root infrastructure.



Software Architect 2007 29

Delegation-Based Structure

• Orthogonality is often the key to cutting across 
cumulative complexity

E.g. the complexity resulting from the accretion of 
implementation code and its interdependencies in a 
class hierarchy

• Split classes, hierarchies and relationships 
between hierarchies along role lines

A copse of small trees rather than a large tree
Fulfilment of roles is in terms of pluggability

Software Architect 2007 30

Domain × Services × Infrastructure
Infrastructure
Plumbing and service 
foundations for use 
as self-contained 
plug-ins.

Services
Services adapted 
appropriately for 
use by the domain 
classes.

Domain
Application domain 
concepts modelled and 
represented with respect 
to plug-in services.

concept

realisation



Software Architect 2007 31

Partitioning by Role

• Role partitioning applies more broadly than 
just interface separation and segregation

Although this is perhaps one of the most visible 
applications of role partitioning

• Packages can be organised with respect to role
Packages should be cohesive with respect to usage 
and purpose
Packages should not be partitioned with respect to 
coincidental criteria, such all classes in a package 
being exceptions or value objects

Software Architect 2007 32

Anatomy of an Engine

Connectors

Parts

Engine

Connectors
Defines interface classes, concrete 
value types and exceptions.

Engine
Acts as the executor and 
integrator, instantiating parts and 
using them in terms of their 
interfaces.

Parts
Defines concrete implementations, 
in terms of connectors, and other 
details that allow an engine to 
function.

A useful and loosely 
coupled architectural style 
for systems or subsystems 
that have an active aspect 
can be likened to an engine, 
operating in terms of 
connectors and parts.



Software Architect 2007 33

Partitioning for Stability

• Different parts of a system are subject to 
different rates of development change

Layering should respect such change, so that less 
stable elements depend on more stable elements, 
and not vice versa
Stability is something that can be tracked over a 
code base's lifetime, and the code can refactored
accordingly
Dependency Inversion is a useful technique for 
rearranging dependencies along the lines of stability

Software Architect 2007 34

Summary

• A selfish object approach separates and 
localises concepts and dependencies

Simplifies testing, modification, extension and 
incremental development

• In the large, the approach leads to inversion 
layers and an architecture with high locality

An onion-layered view centred on the domain 
model, rather than a stack-layered view, is often a 
more appropriate visualisation


