
One Day of Mobile Application

Development

Content

● Patterns/Practices of Mobile Development

● Programming for iPhone

• Objective C, MonoTouch, PhoneGap

● Programming for Android

• Java and SDK

● Programming for WP7

• C# and XAML

Patterns of Mobile Development

(Mobile) Design Patterns

● Design patterns are general reusable solutions to

recurring problems in software design

• Description of a solution rather than working code

• Triad: actors, algorithm, data

● Mobile design patterns

• Desirable features to have in a mobile application

• Platform independent (same for iOS, Android, and so forth)

Pattern Memento Mori (or app mortality)
Background

● Garbage collections applies to apps, not (just) objects

• User only allowed to launch an application

• System manages to quit the application

● One foreground application

• System operates on app instances still active in the background

● Role and behavior of background apps may vary a bit

• iOS: Just place calls to some specific API

• Android/BB: Can buy extra processing time via a UI-less

service. Not recommended for all applications (battery at risk)

• WP7: Tombstoning and background agents

Pattern Memento Mori
Implementation

● Apps notified when no longer interactive

• Given a few seconds of guaranteed lifetime

• May be killed at any time

● Any relevant state at your fingertips

• Present state and date to be likely used in the near future

Applications should consider saving their

state when making it to the background

Pattern Back-and-Save
Background

● Youngsters quick like hell to type on mobile keyboards

• ... but auto-completion is always welcome

• ... and software that reads your mind is always welcome

● What’s been just typed is anyway an effort the user

made—don’t throw it away because of Back or Search

● Minimize the typing effort of the user

● Use hints and smart forms of help to minimize errors

• Should I say it? Validate input and don’t trust users

Pattern Back-and-Save
Implementation

● Revert the classic pattern of desktop apps

• Always save what’s been typed

• Offer a Clear button if that’s important for the specific use-case

● Build your infrastructure to intercept when the user is

leaving a screen—save and exit

Save the content of input forms when the

user’s leaving the screen

Pattern Cache-now-for-Later
Background

● Predictive fetch (or sliding download)

• Try to intelligently guess what the user is going to do next

• Try to download in advance data the user may need later

● Later is not necessarily in a few clicks

• It can be hours or days until you get another chance to be online

● Example

• Weather information

• Don’t limit to the current day; download the entire week

• Apply "sliding download" policies

Pattern Cache-now-for-Later
Implementation

● Cache whatever can be used later

• Data the user has typed

• Choices made

• State of the application

• Fetch data in advance

● No guarantee of permanent connectivity

Remember data and activity and download

data for later use ASAP & AFAP

Pattern Not-Now-Later
Background

● Data synchronization has always been a critical

ingredient of mobile applications

● Occasionally connected applications are so common

Pattern Not-Now-Later
Implementation

● Manual coding using Web services

• Take care yourself of deltas

● Sync Framework 4 for Windows

• Now open sourced

• Sync up with on-premise/cloud SQL Server

• Not requiring clients on devices

• Leverages a remote sync service and enables clients speaking

HTTP and OData to use it

• Usable on iPhone/Android as well

Pattern Guess-Don’t-Ask
Background

● If there’s something you can do to save users a click or

typing, by all means do so

● Minimize interaction

• Typing (use input scopes appropriately, auto-completion)

• Tapping and clicking

• Scrolling

• Thinking (or make user’s choices patently clear)

● Embed data that make the app start quickly

• Define settings but provide reasonable default values for them

Pattern Guess-Don’t-Ask
Implementation

● Remember preferences (cookie-like scenario)

● Example

• Use geolocation to restrict searches

• Arrange and use statistics about use of the app

• Keep track of last action/selection

• Link to contacts (if that’s helpful)

Use any resources to make intelligent

guesses and save users interaction

Pattern Login-and-Forget
Background

● Classic "Remember Me" scenario of Web applications

● Common pattern for applications that require a login to

some Web service

• Display a login box if credentials are not found on the device

• If credentials are found, use stored credentials to log in

automatically

• Optionally, make your copy of credentials expire periodically (in

addition to expiration policies set on the server)

Pattern Login-and-Forget
Security considerations

● The device can be lost or stolen

• Another guy can pass himself off as you

• Another guy can access the amount of info sitting in the phone

(email, personal data, pics, contacts)

● Strong passwords are hard to type on mobile keyboards

• Switch frequently between input scopes (digits, letters, symbols)

• Subsequently, passwords are simpler than expected

● Credentials stored as clear text are not necessarily

visible to anybody

• Not on WP7; iOS has keychain repository

• On Android, you should consider encryption/cipher

Pattern Login-and-Forget
Security considerations

● Behavior that simplify phishing is common in mobile

• Click, click, and click

• Blind clicking: don’t read URL because of limited screen size

• Harder to spot even patently suspicious URLs

● SSL for outbound communications not an issue on

smartphones, but an issue on low-end devices

● Use platform-specific permissions

• Principle of Least Privilege

• Get just what you need; no more no less

Pattern 3-click Navigation
Background

● Immediacy is key in the mobile space

• Users are not always comfortably sitting when they use the app

• Walking, eating, driving, ...

• Any action should be direct and quick

● Usability and design of the application

• Well-defined use-cases

• Detailed analysis of use-cases

• Ask your kids about it; then make a second pass (as a dev)

Pattern 3-click Navigation
Implementation

● Split each screen in a few sections

● Make each feature ideally 3-clicks away

● Take this pattern as a vector, rather than a strict rule

• But if fail on it, reconsider design and use-cases

● Ensure use-cases and user-stories match

• Likely the user will find required steps «reasonable» and in a

natural sequence

• App and users on the same wavelength

Pattern The-App-Menu
Background

● Sometimes long list of items should be displayed

● Vertical lists of items are simplest approach

• Works most of the time, because scrolling is an easy action on

mobile devices

● Too long lists (100+ items) are boring to scroll

• Create pages and scroll horizontally

• You should stay focused on the OS standards

Pattern The-App-Menu
Implementation

● Imagine you’re creating a restaurant menu

• Create categories

• List options and key information

• Let users drill down

Pattern Babel-Tower
Background

● Which language(s) do you support?

• Large audience == Large number of languages

● Many facets of localization

• Text, Views, Graphics, Workflows

• Text dwarfs everything else

● Native support is good but limited at "software" level

• Bind strings to IDs and have some API to resolve them

• Static approach—requires a new compile step

• Make it more dynamic using some in-device database

• Your API

● Main problem remains unresolved

• How to get high-quality localized text?

Pattern Babel-Tower
Localization

● Not a new problem, but revamped by mobile applications

● Best-selling point of mobile apps is comfort for users

● Enabling users to play with the app in their own

language is a double-edged sword

• Great because users like it more

• Bad, if translation is not appropriate

● Nearly all Web sites are limited to just a few languages

● Mobile apps are often offered in 10+ languages

• Translating mobile apps is easier than a full-blown site

Pattern Babel-Tower
Implementation

● Download translated text on the fly

• No need to update the app on the app store if you just add a new

language to the list

• Pick up the language based on the device settings ...

• ... or your app will let users choose

● Enable (professional) translators to work on your text

• Without conflict with development team and delays in the project

management

• Ship with the primary language and add new languages at your

earliest convenience

● Keep an eye on tiyla.com

Check connectivity

● Never guaranteed—it comes and go quickly

● Use system notification services when available

● Refresh your UI promptly

● Always detect network availability and always have a

plan B for network operations

iPhone Programming

iOS: tools

● You need a Mac; the cheapest Macbook is fine

• Mac is necessary to compile the code as it relies on libraries that
simply don’t exist in Windows

• Technically, can run OSX on a Win box; except that it is illegal

● Join the iOS developer program ($99/year)

• Free registration doesn’t not allow to test on real devices

• In 2010, US declared jailbreaking lawful

● Get and install Xcode from Mac store

● Get and install the iOS SDK

● Make a decision about how to tackle iPhone programming ...

iOS: programming options

● Objective C

● Xamarin’s MonoTouch for iOS

● Adobe’s PhoneGap

● Appcelerator’s Titanium

● Adobe’s Creative Suite 5.5

• Packager for iPhone and Android

$399

$699

$49/month

iPhone App Basics

● Starter method (main.m)

● Single window object is created by you in main or

loaded from a XIB file

• XIB files are where the UI behind the iPhone application is

saved/packaged (i.e., form designer files in .NET)

• Single window contains views and/or controls

• One window, possibly multiple views

● Views are rectangular areas on top a window

• Display content (controls, animation, text, drawing)

• Handle events (touch)

• Various specialized views: table, Web, alert, navigation

• View behavior handled by controller classes

#import <UIKit/UIKit.h>
#import "MyWindow.h"

int main(int argc, char **argv)
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 return UIApplicationMain(argc, argv, [MyWindow class], nil);
}

The window class to create.

This is nil if you rely on the main XIB file.

The name of the app-delegate to use.

If nil, then assumes "AppDelegate"

@interface MyWindow : UIApplication {
 UIView *mainView;
 UITextView *textView;
}

#import "MyWindow.h"
@implementation MyWindow

- (void) applicationDidFinishLaunching: (id) unused
{
 UIWindow *window;
 struct CGRect rect = [UIHardware fullScreenApplicationContentRect];
 rect.origin.x = rect.origin.y = 0.0f;

 window = [[UIWindow alloc] initWithContentRect: rect];
 mainView = [[UIView alloc] initWithFrame: rect];
 textView = [[UITextView alloc]
 initWithFrame: CGRectMake(0.0f, 0.0f, 320.0f, 480.0f)];
 [textView setEditable:YES];
 [textView setTextSize:14];

 [window makeKey: self];
 [window _setHidden: NO];
 [window setContentView: mainView];
 [mainView addSubview:textView];

 [textView setText:@"Hello World"];
}

Concepts you must get used to ...

● An app-delegate controls the behavior of the application

from start to end

• Receives notifications when the app reaches certain states such

as “finished launching” or “willterminate” or “memory warning”

● A view-controller class governs the behavior of a view

• Handles touch events, initialization

Concepts you may hear about ...
Outlets/Actions in Interface Builder

● Interface Builder is an optional tool that poor souls

tend to match to Visual Studio designers

• Make use of outlets to hide object references

• Make use of actions to add event handlers

● Slightly tedious procedure

• Control IDs are numbers

• You create wrapper objects (outlets) and then must attach

wrappers to specific controls

• IB does that via drag-and-drop (details saved in XIB internals)

• Alternative is creating the UI via code

Concepts you may hear about ...
Outlets/Actions

● An outlet is an “object reference” through which the

controller acts with an object (i.e., button) in the view

• Similar to Button1 members in VS, must be created explicitly

• Need outlets to be able to set a label after a button click

● An action is an action to be performed on an object

• First add outlets and actions to XIB

• Next connect them to actual objects so that action “btnClicked” is

associated with an event on Button1 and outlet “Button1” is

associated with a given button…

• Finally, write the code for btnClicked in the view controller class

● IB used for simple apps or simple views of an app

• Can be told to autogenerate object-refs (i.e., .NET control IDs)

Concepts you may hear about ...
Outlets/Actions in code

● Real programmers do everything in code

• Create control instances with explicit coordinates

• Automatic z-order; layers go from background to foreground

• Set properties (not all properties are visible through IB)

• Set actions

● Everything takes place in loadView (for views)

• In applicationDidFinishLaunching if you have just a window

● Real programmers often create a just-for-fun.xib to

experiment with the graphical layout

• Grab coordinates and copy to source code in loadView

(void) loadView
{
 // Create a full-screen view and set background
 UIView *view = [[UIView alloc]
 initWithFrame:[[UIScreen mainScreen] applicationFrame]];
 view.backgroundColor = [UIColor whiteColor];

 // Create the button and set title and position
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = CGRectMake(100, 170, 100, 30);
 [button setTitle:@"Click"
 forState:UIControlStateNormal];

 // Add a click handler
 [button addTarget:self
 action:@selector(buttonPressed)
 forControlEvents:UIControlEventTouchUpInside];

 // Add the button to the view and set the view
 [self.view addSubview:button];
 self.view = view;
 [view release];
}

(void) buttonPressed
{
 NSLog(@"Button Pressed!");
}

iOS: MonoTouch

● Use .NET for building iOS applications

• Check out Xamarin.com ($399 license for individuals)

● A Mac computer is still required

• Need: iPhone SDK, Mono, MonoTouch SDK

• Use MonoDevelop to develop code

• Use Interface Builder including Cocoa Touch thus having access

to all the standard iPhone controls

● Limitations on generics and dynamic code (DLR)

• No JIT in iOS

● You get a native iPhone application that can be

published as any other iPhone application

● Wrappers for iPhone native API (accelerometer, GPS, ...)

iOS: MonoTouch

● Compile standard .NET 4 code using the MonoTouch

core assemblies

● Reuse is possible via a new compile step for the

MonoTouch profile

• Non UI-code

• Code can potentially be shared between .NET, Android, and

iPhone/iPad

● Currently, C# only

● With some work, it is possible to write iPhone code in

Windows under Visual Studio and use the same project

to compile on Mac

DEMO

● MonoTouch in action

iOS: Deployment

● Applications must be published to the AppStore

• Internal distribution is possible only with an Enterprise developer

account

● Application code must be signed against a distribution

certificate (to identify the publisher) and a distribution

provisioning profile

• For companies, only the Team Agent can get the certificate

• Get the AppStore distribution provisioning profile from the portal

• Compile against that with your distribution certificate and submit

iOS: Testing on devices

● Get a Development Certificate to sign your code

• Create a Certificate Signing Request using the Keychain

Access application on your Mac

• Log on to the portal and upload the CSR (once per developer)

• Install the certificate in the Mac keychain

● Get a provisioning profile (Pprof)

• Register a device manually through the portal or connect them to

Xcode and let it do what’s required (restricted to a few devices)

• If you do it manually, you need the device UDID

• Can get UDID via Xcode, iTunes, or the device itself (settings)

• UDID != IMEI or serial number

● A Pprof can point to multiple devices (identified by UDID)

iOS: Getting the Pprof

● Xcode

• Once the certificate is installed, you simply build the app and tell

Xcode you want to test on the attached device

• Xcode gets the Pprof automatically (if the device is registered)

• In alternative, do it manually through the portal and download the

Pprof to the device

● Ad hoc provision profiles

• To test on non-registered devices (up to 100) create an ad-hoc

provision profile manually on the portal

• Indicate UDID and App ID and download the Pprof as a file

• Compile the app against this Pprof and send both profile and

app to the tester

• Tester doesn’t even need to have a Mac and install via iTunes

Over-the-Air Beta Testing
testflightapp.com

● Developer

• Get an account and create a team of testers (need their UDID)

• Create IPA against team members UDIDs and upload

• Go to site and distribute app

• Site makes your app available for download to members

● Tester

• Get an account and register device with the site (UDID needed)

• Get invited to test an app

• Receive via web a version of the app that runs on your device

• Outside marketplace

PhoneGap

● Open source solution for building mobile apps using

HTML, JavaScript, CSS

• No ASP.NET, Java, PHP; pure Web client solution

• Create your app using HTML stuff (i.e., in VS)

● Shell of native code that hosts a set of HTML pages

• Uses the WebBrowser control that each platform provides

• Provides a JavaScript API to abstract device-specific functions

● No way to get automatically a native UI experience

• Use CSS to mimic a native UI (e.g., iPhone)

• Use jQueryMobile and touch libraries

• Use script to build ad hoc controls (e.g., Android date-picker)

PhoneGap and JavaScript frameworks

● Device agnostic + open standards

● WebKit

• Layout engine for rendering Web pages

• Engine shared by nearly all mobile browsers (iOS, Android)

• HTML5, local storage, CSS

● jQuery & jQuery Mobile

• Better JavaScript programming

● XUI, Sencha Touch

• Touch capabilities

PhoneGap

● MIT or BSD New license

• Essentially, do whatever you want but place the "software

provided as is" label in relevant parts of your source

● iOS, Android, BlackBerry (>4.5), webOS, Symbian

• And growing

● PhoneGap Build

● Adobe

PhoneGap

● Native features reached via an internal bridge from

PhoneGap JavaScript framework

• Features depend on platforms/versions

● Geolocation

● Notification (sound, vibrate, alert)

● Storage

● Network

● Camera

● Accelerometer

● Contacts

PhoneGap for iOS

● Create a new PhoneGap-based application in Xcode

● Create a www folder in the Xcode project

● Edit the index.html which represents your main screen

● Add any Javascript, CSS and image files you need

● Build and run on simulator or device as usual

● PhoneGap apps are okay with Apple

• Each app will be judged on its own merits, PhoneGap aside

DEMO

● PhoneGap in action

Android Programming

Android: Tools

● Pay a fee only to publish to the Market (one-time $25)

● Get and install the Java SDK

● Get and install the Android SDK

● Eclipse or IntelliJ Community Edition as the IDE

● Get familiar with Java

Android App Basics

● Starter class

● Create main view

● View based on XML file(s)

● Event handling

● Manual binding of handlers to controls

● Manual definition of control references (outlets)

● Easy match with C#/VB

Android Programming
Activities

● Any app is based on one (or more) activity

• Override method onCreate in any activity of yours

• Perform any one-time tasks

• Typically, register event handlers

● OnCreate invoked each time the activity is created

• When the application is starting up

• When the application is re-launched after being paused

● App can be paused

• Save/restore data is up to the application

• Activity may be restarted when rotation changes

Android Programming
Layout and text

● UI of activities expressed in XML

● Relative positioning preferred

• Absolute positioning deprecated

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:padding="7dp"
 android:textStyle="bold"
 android:textSize="18px"
 android:textColor="#3fffff"
 android:text="expoware.org/mobile welcomes you!" />
</LinearLayout>

Android Programming
Layout and text

● LinearLayout

• Sequence of panels displayed horiz/vertically

● RelativeLayout

• Elements indicate their preferred position relative to the parent

• Right of, align-to-top, any number of child elements

● FrameLayout

• Placeholder for a single (possibly nested) object, used to reserve

space for dynamically generated content

● TableLayout

• Row-based layout

• Indicate rows, Android figures out ideal number of columns

• Can indicate specific column a widget belongs to

Android Programming
Widgets and event handlers

● Widgets defined in XML or added programmatically

● Register listeners programmatically in onCreate

public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Instantiate internal members referring to widgets
 button1 = (Button) findViewById(R.id.button1);

 // Attach event handlers as required
 button1.setOnClickListener(button1Click);
}

private View.OnClickListener button1Click = new View.OnClickListener() {
 public void onClick(View v) {
 UpdateScreen();
 }
};

DEMO

● Android in action

Android Programming
Menus

● Define menus as XML resources

• ID, text and icon

• Create submenus by nesting <menu> sub-trees

● Group logically related menu items

• Disable and enable items together

• Use <group> element to group multiple menu items

• Each group is given a unique ID

• No impact on rendered UI; purely logical

● Menu overrides

• onCreateMenuOptions and onPrepareMenuOptions

• Inflate menu to display

• onOptionsItemSelected

Android Programming
Dialogs

● Auto-disappearing toast messages for quick feedback

● Alert dialog boxes: boring to deal with ...

AlertDialog.Builder builder = new AlertDialog.Builder(MyActivity.this);
builder.setMessage(message)
 .setCancelable(false)
 .setTitle(title)
 .setPositiveButton(yes, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 StartNewGame();
 dialog.dismiss();
 }
 })
 .setNegativeButton(no, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });
AlertDialog alert = builder.create();
alert.show();

Android Programming
Storage: preferences

● Preference framework

• A preference is value+key+description+default value

• Use XML to define groups of preferences

• Types of preferences as UI tips (checkbox-pref, edittext-pref, list)

● Load preferences into an activity

• Both main activity and additional activity

• Activity displays an ad hoc UI built around preferences

● Automatic edit and save

● Data saved to a local file—transparent to users/devs

Android Programming
Storage: preferences

● Preference framework

// Trigger a new activity with the preference screen
@Override
public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 Intent intent = new Intent(this, LoginPreferences.class);
 startActivity(intent);
}

public class LoginPreferences extends PreferenceActivity
{
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.NameOfTheXmlFile);
 }
}

Android Programming
Storage: preferences

● Direct access to the preference API

// Save preferences (decide about file name and visibility)
SharedPreferences preferences;
preferences = getSharedPreferences(fileName, MODE_PRIVATE);
Editor preferenceEditor = preferences.edit();
preferenceEditor.putString(key, text);
preferenceEditor.commit();

// Read preferences (use default storage)
SharedPreferences preferences;
preferences = PreferenceManager.getDefaultSharedPreferences(context);
info.Nickname = preferences.getString("nickname", null);
info.Password = preferences.getString("password", null);
info.RememberMe = preferences.getBoolean("rememberme", true);

DEMO

● Android in action

Android Programming
Storage: files

● Data saved to files is considered private of the app

• Removed when you uninstall/clear the app

• A file is a file—public, unless you mark it as private

• Files and directories rooted in "/data/data/APP/files"

● Access to external storage (SD) requires permission

• Slightly different API for SD cards

• SD may not be available during debug

● Classic stream-based API

● Learn and apply object serialization

Android Programming
Storage: serialization

public class ObjectFormatter {
 public static byte[] Serialize(Object o)
 {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 try {
 ObjectOutput out = new ObjectOutputStream(bos);
 out.writeObject(o);
 out.close();

 // Get the bytes of the serialized object
 byte[] buf = bos.toByteArray();
 return buf;
 } catch(IOException ioe)
 {
 return null;
 }
 }

 :
}

Android Programming
Storage: deserialization

public class ObjectFormatter {
 public static Object Deserialize(byte[] b)
 {
 try {
 ObjectInputStream in = new ObjectInputStream(new
 ByteArrayInputStream(b));
 Object object = in.readObject();
 in.close();
 return object;
 }
 catch(ClassNotFoundException cnfe) {
 return null;
 }
 catch(IOException ioe) {
 return null;
 }
 :
}

Android Programming
Storage: picklist

● Alert dialog with a list of items as argument

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("Pick a match");
builder.setItems(matches, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int index) {
 String fileName = matches[index];
 MatchStatus status = StoreManager.ReadFromPrivateFile(
 getApplicationContext(), file);

 // Update the UI of the application to reflect the selected match
 SetMatchStatus(status);
 RefreshView();
 }});

AlertDialog alert = builder.create();
alert.show();

DEMO

● Android in action

Android Programming
Networking

● Add permission "android.permission.INTERNET"

● Clean HTTP API

url = "...";
HttpClient client = new DefaultHttpClient();
HttpGet request = new HttpGet(url);
HttpResponse response = client.execute(request);
BufferedReader rd = new BufferedReader(
 new InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = rd.readLine()) != null) {
 DoSomethingWithLine(line);
}

HttpPost request = new HttpPost(url);
request.setEntity(new UrlEncodedFormEntity(nameValuePairs));
List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(2);
nameValuePairs.add(new BasicNameValuePair("id", "12345"));
nameValuePairs.add(new BasicNameValuePair("data", "Android is cool!"));
HttpResponse response = httpclient.execute(request);

Android Programming
Network availability

● Key aspect of mobile programming

// If no network is available networkInfo will be null,
// otherwise check if we are connected
public boolean isNetworkAvailable()
{
 ConnectivityManager cm;
 cm = (ConnectivityManager) getSystemService(CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo = cm.getActiveNetworkInfo();
 if (networkInfo != null && networkInfo.isConnected())
 {
 return true;
 }
 return false;
}

Android Programming
SMS

● Add permission "android.permission.SEND_SMS"

// Send SMS silently
SmsManager sm = SmsManager.getDefault();
String number = "...";
sm.sendTextMessage(number, null, "Your message", null, null);

// Show the screen for sending SMS and let user type.
// No need to get permissions for this
String number = "...";
startActivity(
 new Intent(Intent.ACTION_VIEW, Uri.fromParts("sms", number, null)));

Android Deployment

● Just compile and distribute the APK executable

● Everything is at your own risk

• Behavior over different firmware

• Different hardware/software characteristics

• Conflicts with other applications and crashes

● Android requirements

• Upload signed code (when publish the app)

• Sign against a (self-issued) certificate created with SDK tools

• Re-sign with the same certificate when updating an app

• Not necessary to sign all of your apps with the same key

● My perspective of the Android jungle

Windows Phone 7 Programming

WP7 Programming
Startup

● App.xaml and WMAppManifest.xml

● PhoneApplicationFrame is the top level container

• One for the entire application

• Created automatically when the application is initialized

• Load the page specified in WMAppManifest.xaml

● RootVisual property to set the main application UI

• Dismisses the splash screen

● PhoneApplicationPage is the base class for pages

WP7 Programming
Layout and XAML

● Application bar

● StackPanel, Grid, Canvas

● Style

● Controls and Templates

● User Controls

● Storyboard

● Binding syntax

WP7 Programming
Pivot and panorama

● Pivot applications

• Tab like applications

• Collection of pages loaded individually

● Panorama applications

• Single page with multiple panes

• Horizontal scrolling

• Memory intensive: unique multi-pane page

• Never more than 3-4 panes

DEMO

● WP7 in action

• (Snippets of a real-world app)

WP7 Programming
Isolated storage

● Same API as in .NET

• Stream-based

• Serialization of objects

● Inaccessible to other applications

● Need to use a special service to explore storage

● SQL Server CE writing files within iso-storage

• Windows Phone 7.5 (Mango)

● Best approach: Tell-Don’t-Save-Over-and-Over-Again

• Build a framework to save your classes and reuse the code

WP7 Programming
Back and save

● OnBackKeyPress on pages

• Allow to cancel the back navigation

• Can be used to save anyway data

● Back and pivot/panorama

• Move back to the first item instead of exiting the app

• Dismiss dialog boxes (up to you to create a framework)

● Save state during navigation

WP7 Programming
Launchers and choosers

● Launch a system dialog

• WebBrowser, Email, MediaPlayer, PhoneCall, Sms, Search

● Launch a system dialog and get a value

• CameraCapture, EmailAddress, PhoneNumber, Photo

DEMO

● WP7 in action

• (Snippets of a real-world app)

WP7 Programming
Networking

● Async model

● WebClient and HttpWebRequest

● JSON serializer

• DataContractJsonSerializer

Hard termination of an app
Exit via the Back button

● Quit the application and free memory

● Apps get notifications for the event

• Chance to save state to permanent storage

• App decides what’s relevant

● Restore last known state and provide a continuous-feel

experience

Soft termination of an app
User activity causes termination

● Incoming calls

● Engaged screen

● Tap Start button (i.e, launch another app)

● Tap Search button

● Respond to toast notifications

● Programmatically invoke launcher/chooser

Tombstoning

● Apps given a 10 sec notice of termination

• Save state to transient memory

• Save state to permanent storage

● Apps are then removed from memory

• System retains app’s transient memory

• Data stored as long as possible

Resuming from tombstoning
Scenarios

● User ends the phone call

● User disengages the screen

● User navigates back to the application using the Back

button

• After checking a toast message

• After making a search

● User completes given chooser task

Resuming from tombstoning
Action

● User reactivates a tombstoned app

• New application instance created

• Transient state (if any still available) passed

• Regular initialization process bypassed

● No guarantee transient state is still there

• If not, regular initialization takes place

Behavior of tombstoned apps

● No behavior at all; just dead code

• Only MS native apps allowed to be active in the background

● Fake multitasking allows users to switch apps in a few

seconds—not instantly

● Change in WP7 Mango

PhoneApplicationService
Events

● Launching

• Application being launched

● Closing

• Application is exiting

● Deactivating

• Being tombstoned

● Activated

• Made active after being tombstoned

Lifecycle
Standard launch/close cycle

● Launching

• Do not load content from storage or Web

• Do not assume the app is resuming from a previous session

(check StartupMode)

● Closing

• Save persistent state, if any

Lifecycle
Tombstoning cycle

● Deactivated

• Save transient state into the State dictionary

• Consider saving application state to storage

• 10 seconds to complete

● Activated

• Loading any transient state

• Avoid retrieving data from storage

• Critical for load time (consider optimization)

MVVM

● MVVM and Blend

● Just a matter of data-binding?

General practices

Layout

● Based on use-cases, define the main screen for the app

• Use the typical layout of the platform

• Just a few buttons for the main options

• Use menu if common on the platform

• Ensure you can control easily the layout

● Add pages and navigation

• Handle Back button properly

• Use popup dialogs when it’s a quick selection

● Add splashscreen and about

Settings

● Abstract your app settings in a class

• Add serialization logic to the class

● Use settings throughout the app

• Bind to localization logic if required

● Add a Settings page

• Save state and settings as often as possible

Design consideration

● Mobile apps are relatively simple

● Not a good reason to release on design constraints

● Maintainability

• Expect frequent updates and extensions to the code

98

Summary

● Mobile development has a lot of common ground

between platforms

● Each platform does things in a different way—but nearly

the same things

● IDE is problematic more than languages and SDKs

